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Motivation

Generalization properties of DL are not well understood.
Recent works addressed the estimation of smooth
functions in a nonparametric regression framework using
sparse DNNs.
From a Bayesian point of view, the posterior distribution
using some sparsity-inducing prior concentrates at the
near-minimax rate when estimating Hölder smooth
functions.
Variational inference is wisely used in practice to compute
the exact posterior.

Question
Do Bayesian neural networks retain the same properties when
using variational inference ?
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Contributions of this work

Answer
Yes ! If the variational family is well chosen.

Nonasymptotic generalization bound based on PAC-Bayes
theory ensuring the consistency of approximations of
Bayesian DNNs, along with rates of convergence.
Posterior concentration at near-minimax rates for a wise
choice of the architecture when estimating Hölder smooth
functions.
Extension of the oracle inequality when the optimization
algorithm incurs error as measured by its effect on the
ELBO.
Selection of the network architecture using the ELBO
criterion.
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Framework : Nonparametric regression & DNNs

Nonparametric regression

Xi ∼ U([−1, 1]d),
Yi = f0(Xi) + ζi ,
ζi ∼ N (0, σ2).

Deep neural networks
Depth L ≥ 3, width D ≥ d , sparsity S ≤ T where T is
the total number of connections.
Parameter θ = {(A1, b1), ..., (AL, bL)}.
fθ(x) = ALρ(AL−1...ρ(A1x + b1) + ... + bL−1) + bL.
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Bayesian approach

Spike-and-Slab prior π
First, we select uniformly at random a number S of active
connections, and denote γt = 1 if connection t is active
and γt = 0 otherwise.

Then, for t = 1, ...,T :

{
θt |γt = 1 ∼ N (0, 1)

θt |γt = 0 ∼ δ{0}

V. Rockova, N. Polson. Posterior Concentration for Sparse Deep Learning. NeurIPS, 2018.

Tempered posterior distribution (0 < α < 1)

By tempering Bayes’ rule using a temperature parameter α,
we get the tempered posterior distribution :

πn,α(dθ) ∝ exp

(
− α

2σ2

n∑
i=1

(Yi − fθ(Xi))2
)
π(dθ).
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Sparse variational inference

Idea of variational inference
Choose a family FS,L,D of probability distributions over θ and
approximate πn,α by a distribution in FS,L,D :

π̃n,α = arg min
q∈FS,L,D

KL(q, πn,α).

Spike-and-Slab variational family FS,L,D

Hyperparameters of the family : discrete distribution qγ
on the set of T -dimensional 0-1 vector γ with S nonzero
entries, mean-variance pairs {(mt , s

2
t )}t=1,...,T .

First, we select γ ∼ qγ.

Then, for t = 1, ...,T :

{
θt |γt = 1 ∼ N (mt , s

2
t )

θt |γt = 0 ∼ δ{0}
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Generalization error bound

Generalization error

R(π̃n,α) = E
[∫
‖fθ − f0‖22π̃n,α(dθ)

]

Theorem

R(π̃n,α) ≤ 2
1− α

inf
‖θ∗‖∞≤B

‖fθ∗ − f0‖22 +
2

1− α

(
1 +

σ2

α

)
rn

where the rate of convergence rn is of order LS
n

log(BD).

The upper bound on the generalization error is composed of
the approximation error of f0 (i.e. the bias) and the estimation
error rn (i.e. the variance).
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Some remarks

Main idea of the proof : PAC-Bayes theory + (extended) prior
mass condition

π
(
θ/‖fθ − fθ∗‖2 ≤ rn

)
≥ e−nrn .

P. Alquier, J. Ridgway. Concentration of Tempered Posteriors and of their Variational
Approximations. to appear in The Annals of Statistics, 2017.

We recover exactly the rate of convergence of the empirical
risk minimizer for DNNs which is obtained using different
proof techniques (by computing the rn-local covering entropy).

J. Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU activation
function. to appear in The Annals of Statistics, 2017.

T. Suzuki. Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov
spaces : optimal rate and curse of dimensionality ICLR, 2019.
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Posterior concentration for Hölder smooth function

Theorem
Assume that f0 is β-Hölder smooth with 0 < β < d , that the
activation function is ReLU, and that

L � log n,

D � n
d

2β+d / log n,

S � n
d

2β+d .

Then the variational approximation π̃n,α concentrates at the
(near)-minimax rate rn = n

−2β
2β+d in the sense that :

π̃n,α

(
θ ∈ ΘS ,L,D

/
‖fθ − f0‖22 > Mn · n

−2β
2β+d · log2 n

)
−−−−→
n→+∞

0

in probability as n→ +∞ for any Mn → +∞.
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Effect of an optimization error
VI alternatively maximizes the ELBO :

ELBO(q) = − α

2σ2

n∑
i=1

∫
(Yi − fθ(Xi))2q(dθ)− KL(q, πn,α).

When considering an algorithm (π̃
(j)
n,α)j for computing the ideal

approximation π̃n,α, there is an additional term in the
generalization error bound :

Theorem

R(π̃(j)
n,α) ≤ 2

1− α
inf ‖fθ∗− f0‖22 +

2
1− α

(
1 +

σ2

α

)
rn +

E[∆n,j ]

n

where ∆n,j is the difference between the maximum value of
the ELBO and the value of the ELBO at the j th iteration of
the algorithm.
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How to select the network architecture ?

The choice of the architecture of the neural network is
crucial and can lead to faster convergence and better
approximation.
Contrary to the approach of Rockova & Polson (2018)
which is fully Bayesian and treats S , L,D as random
variables, we formulate the architecture design of DNNs
as a model selection problem.
Choose among a number MS (resp. ML, MD) of possible
values of the sparsity (resp. depth, width).

Strategy : ELBO maximization criterion

Ŝ , L̂, D̂ = arg max
S ,L,D

ELBO(π̃S ,L,D
n,α ).

B.-E. Chérief-Abdellatif. Consistency of ELBO maximization for model selection. AABI, 2019.

Badr-Eddine Chérief-Abdellatif Convergence Rates of VI in Sparse DL 11 / 13



Adaptivity of ELBO maximization

Theorem
For any value of S , L,D,

R(π̃Ŝ ,L̂,D̂
n,α ) ≤ 2

1− α
inf
θ∗S,L,D

‖fθ∗S,L,D − f0‖22 +
2

1− α

(
1 +

σ2

α

)
rS ,L,Dn

+
2σ2

α(1− α)
· logMS + logML + logMD

n
.

As soon as T is not exponentially larger than n, then we
adaptively achieve the lowest generalization error among
all architectures.
Typically, it leads to (near-)minimax rates for Hölder
smooth functions and selects the optimal architecture
even without the knowledge of the smoothness parameter
β (which was previously required).
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Thank you !
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