Consistency of Variational Inference

Badr-Eddine Chérief-Abdellatif Under the supervision of Pierre Alquier

Second-year PhD students team days Ecole Doctorale Mathématiques Hadamard 20 May 2019

Outline of the talk

- Tempered Variational Bayes
 - Tempered posteriors
 - Variational Bayes
- ELBO maximization
 - Mixture models
 - Model selection
- Consistency of VB
 - Theoretical results
 - Efficient algorithms

- Tempered Variational Bayes
 - Tempered posteriors
 - Variational Bayes
- 2 ELBO maximization
 - Mixture models
 - Model selection
- Consistency of VB
 - Theoretical results
 - Efficient algorithms

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from P^0 in a model $\mathcal{M} = \{P_{\theta}, \theta \in \Theta\}$ associated with a likelihood L_n . We define a prior π on Θ .

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from P^0 in a model $\mathcal{M} = \{P_{\theta}, \theta \in \Theta\}$ associated with a likelihood L_n . We define a prior π on Θ .

The posterior

$$\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$$

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from P^0 in a model $\mathcal{M} = \{P_{\theta}, \theta \in \Theta\}$ associated with a likelihood L_n . We define a prior π on Θ .

The posterior

$$\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$$

The tempered posterior - $0 < \alpha < 1$

$$\pi_{n,\alpha}(\mathrm{d}\theta) \propto [L_n(\theta)]^{\alpha} \pi(\mathrm{d}\theta).$$

Various reasons to use a tempered posterior

Easier to sample from

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. $\it Statistics \ and \ Computing.$

Various reasons to use a tempered posterior

Easier to sample from

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

Robust to model misspecification

P. Grünwald and T. Van Ommen (2017). Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It. *Bayesian Analysis*.

Various reasons to use a tempered posterior

Easier to sample from

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

Robust to model misspecification

P. Grünwald and T. Van Ommen (2017). Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It. *Bayesian Analysis*.

Theoretical analysis easier

A. Bhattacharya, D. Pati & Y. Yang (2016). Bayesian fractional posteriors. *Preprint arxiv*:1611.01125.

- Tempered Variational Bayes
 - Tempered posteriors
 - Variational Bayes
- 2 ELBO maximization
 - Mixture models
 - Model selection
- Consistency of VB
 - Theoretical results
 - Efficient algorithms

$$\begin{split} \tilde{\pi}_{\textit{n},\alpha} &= \arg\min_{\rho \in \mathcal{F}} \mathcal{K}(\rho, \pi_{\textit{n},\alpha}) \\ &= \arg\max_{\rho \in \mathcal{F}} \left\{ \alpha \int \ell_{\textit{n}}(\theta) \rho(\mathrm{d}\theta) - \mathcal{K}(\rho,\pi) \right\}. \end{split}$$

$$\begin{split} \tilde{\pi}_{n,\alpha} &= \arg\min_{\rho \in \mathcal{F}} \mathcal{K}(\rho, \pi_{n,\alpha}) \\ &= \arg\max_{\rho \in \mathcal{F}} \left\{ \alpha \int \ell_n(\theta) \rho(\mathrm{d}\theta) - \mathcal{K}(\rho,\pi) \right\}. \end{split}$$

Examples:

$$egin{aligned} & ilde{\pi}_{n,lpha} = rg\min_{
ho \in \mathcal{F}} \mathcal{K}(
ho,\pi_{n,lpha}) \ & = rg\max_{
ho \in \mathcal{F}} \left\{ lpha \int \ell_{n}(heta)
ho(\mathrm{d} heta) - \mathcal{K}(
ho,\pi)
ight\}. \end{aligned}$$

Examples:

parametric approximation

$$\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathcal{S}_d^+ \right\}.$$

$$\begin{split} \tilde{\pi}_{\textit{n},\alpha} &= \arg\min_{\rho \in \mathcal{F}} \mathcal{K}(\rho, \pi_{\textit{n},\alpha}) \\ &= \arg\max_{\rho \in \mathcal{F}} \left\{ \alpha \int \ell_{\textit{n}}(\theta) \rho(\mathrm{d}\theta) - \mathcal{K}(\rho,\pi) \right\}. \end{split}$$

Examples:

parametric approximation

$$\mathcal{F} = \{ \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathcal{S}_d^+ \}$$
.

• mean-field approximation, $\Theta = \Theta_1 \times \Theta_2$ and

$$\mathcal{F} = \{ \rho : \rho(\mathrm{d}\theta) = \rho_1(\mathrm{d}\theta_1) \times \rho_2(\mathrm{d}\theta_2) \}.$$

- Tempered Variational Bayes
 - Tempered posteriors
 - Variational Bayes
- ELBO maximization
 - Mixture models
 - Model selection
- Consistency of VB
 - Theoretical results
 - Efficient algorithms

Mixture models

•
$$P_{\theta} = P_{p,\theta_1,\dots,\theta_K} = \sum_{j=1}^K p_j q_{\theta_j}$$

Mixture models

- $P_{\theta} = P_{p,\theta_1,\dots,\theta_K} = \sum_{j=1}^K p_j q_{\theta_j}$
- prior $\pi: p = (p_1, \dots, p_K) \sim \pi_p = \mathcal{D}(\alpha_1, \dots, \alpha_K)$ and the θ_j 's are independent from π_θ .

Mixture models

- $P_{\theta} = P_{p,\theta_1,\dots,\theta_K} = \sum_{j=1}^K p_j q_{\theta_j}$
- prior $\pi: p = (p_1, \dots, p_K) \sim \pi_p = \mathcal{D}(\alpha_1, \dots, \alpha_K)$ and the θ_j 's are independent from π_θ .

Tempered posterior:

$$L_n(\theta)^{\alpha}\pi(\theta) \propto \left(\prod_{i=1}^n \sum_{j=1}^K p_j q_{\theta_j}(X_i)\right)^{\alpha} \pi_p(p) \prod_{j=1}^K \pi_{\theta}(\theta_j).$$

Mixture models

- $P_{\theta} = P_{p,\theta_1,\dots,\theta_K} = \sum_{j=1}^K p_j q_{\theta_j}$
- prior $\pi: p = (p_1, \dots, p_K) \sim \pi_p = \mathcal{D}(\alpha_1, \dots, \alpha_K)$ and the θ_j 's are independent from π_θ .

Tempered posterior:

$$L_n(\theta)^{\alpha}\pi(\theta) \propto \left(\prod_{i=1}^n \sum_{j=1}^K p_j q_{\theta_j}(X_i)\right)^{\alpha} \pi_p(p) \prod_{j=1}^K \pi_{\theta}(\theta_j).$$

Variational approximation:

$$\tilde{\pi}_{n,\alpha}(p,\theta) = \rho_p(p) \prod_{j=1}^K \rho_j(\theta_j).$$

ELBO maximization for mixtures

Optimization program

$$\min_{\rho = (\rho_p, \rho_1, \dots, \rho_K)} \left\{ -\alpha \sum_{i=1}^n \int \log \left(\sum_{j=1}^K p_j q_{\theta_j}(X_i) \right) \rho(d\theta) + \mathcal{K}(\rho_p, \pi_p) + \sum_{j=1}^K \mathcal{K}(\rho_j, \pi_j) \right\}$$

$$egin{aligned} -\log\left(\sum_{j=1}^{K}p_{j}q_{ heta_{j}}(X_{i})
ight) &= \min_{\omega^{i}\in\mathcal{S}_{K}}\left\{-\sum_{j=1}^{K}\omega_{j}^{i}\log(p_{j}q_{ heta_{j}}(X_{i}))
ight. \ &+\sum_{j=1}^{K}\omega_{j}^{i}\log(\omega_{j}^{i})
ight\} \end{aligned}$$

Coordinate Descent algorithm

Algorithm 1 Coordinate Descent Variational Bayes for mixtures

```
1: Input: a dataset (X_1,...,X_n), priors \pi_p, \{\pi_j\}_{j=1}^K and a family \{q_\theta/\theta \in \Theta\}
 2: Output: a variational approximation \rho_p(p) \prod_{i=1}^K \rho_i(\theta_i)
 3: Initialize variational factors \rho_p, \{\rho_i\}_{i=1}^K
 4: until convergence of the objective function do
 5: for i = 1, ..., n do
          for i = 1, ..., K do
               set w_j^i = \exp\left(\int \log(p_j)\rho_p(dp) + \int \log(q_{\theta_j}(X_i))\rho_j(d\theta_j)\right)
          end for
          normalize (w_i^i)_{1 \le i \le K}
10: end for
11: set \rho_p(dp) \propto \exp\left(\alpha \sum_{i=1}^n \sum_{j=1}^K \omega_j^i \log(p_j)\right) \pi_p(dp)
12: for i = 1, ..., K do
         set \rho_j(d\theta_j) \propto \exp\left(\alpha \sum_{j=1}^n \omega_j^i \log(q_{\theta_j}(X_i))\right) \pi_j(d\theta_j)
14: end for
```

Numerical example on Gaussian mixtures

B.-E. Chérief-Abdellatif & P. Alquier (2018). Consistency of Variational Bayes Inference for Estimation and Model Selection in Mixtures. *Electronic Journal of Statistics*.

Numerical example on Gaussian mixtures

B.-E. Chérief-Abdellatif & P. Alquier (2018). Consistency of Variational Bayes Inference for Estimation and Model Selection in Mixtures. *Electronic Journal of Statistics*.

Gaussian mixture $\sum_{j=1}^{3} p_j \mathcal{N}(\theta_j, 1)$ and Gaussian prior on θ_j . Sample size n = 1000, we report the MAE over 10 replications.

Algo.	р	θ_1	θ_2	θ_3
$VB_{\alpha=0.5}$	0.03 (0.02)	0.14 (0.30)	0.38 (1.11)	0.05 (0.05)
$VB_{\alpha=1}$	0.03 (0.02)	0.14 (0.21)	0.36 (0.97)	0.06 (0.04)
EM	0.03 (0.02)	0.14 (0.22)	0.36 (0.97)	0.06 (0.05)

- Tempered Variational Bayes
 - Tempered posteriors
 - Variational Bayes
- ELBO maximization
 - Mixture models
 - Model selection
- Consistency of VB
 - Theoretical results
 - Efficient algorithms

D. Blei, A. Kucukelbir & J. McAuliffe. Variational inference : A review for statisticians. *JASA*, 2017.

The relationship between the ELBO and $\log p(\mathbf{x})$ has led to using the variational bound as a model selection criterion. This has been explored for mixture models (Ueda and Ghahramani 2002; McGrory and Titterington 2007) and more generally (Beal and Ghahramani 2003). The premise is that the bound is a good approximation of the marginal likelihood, which provides

a basis for selecting a model. Though this sometimes works in practice, selecting based on a bound is not justified in theory. Other research has used variational approximations in the log predictive density to use VI in cross-validation-based model selection (Nott et al. 2012).

Assume that we have a countable number of models, define $\tilde{\pi}_{n,\alpha}^K$ a variational approximation of the tempered posterior in model K:

Assume that we have a countable number of models, define $\tilde{\pi}_{n,\alpha}^K$ a variational approximation of the tempered posterior in model K:

ELBO maximization program

$$\tilde{\pi}_{n,\alpha}^{K} = \arg\max_{\rho_{K} \in \mathcal{F}_{K}} \left\{ \alpha \int \ell_{n}(\theta_{K}) \rho_{K}(d\theta_{K}) - \mathcal{K}(\rho_{K}, \pi_{K}) \right\}$$

Assume that we have a countable number of models, define $\tilde{\pi}_{n,\alpha}^K$ a variational approximation of the tempered posterior in model K:

ELBO maximization program

$$\tilde{\pi}_{\mathbf{n},\alpha}^{K} = \arg\max_{\rho_{K} \in \mathcal{F}_{K}} \left\{ \alpha \int \ell_{\mathbf{n}}(\theta_{K}) \rho_{K}(d\theta_{K}) - \mathcal{K}(\rho_{K}, \pi_{K}) \right\}$$

ELBO

ELBO(
$$K$$
) = $\alpha \int \ell_n(\theta_K) \tilde{\pi}_{n,\alpha}^K(d\theta_K) - \mathcal{K}(\tilde{\pi}_{n,\alpha}^K, \pi_K)$

ELBO criterion

Model selection criterion

$$\hat{\mathcal{K}} = rg \max_{\mathcal{K} \geq 1} \left\{ \operatorname{ELBO}(\mathcal{K}) - \log \left(\frac{1}{b_{\mathcal{K}}} \right) \right\}$$

ELBO criterion

Model selection criterion

$$\hat{\mathcal{K}} = rg \max_{\mathcal{K} \geq 1} \left\{ \operatorname{ELBO}(\mathcal{K}) - \log \left(\frac{1}{b_{\mathcal{K}}} \right) \right\}$$

B.-E. Chérief-Abdellatif. Consistency of ELBO maximization for model selection. *Proceedings of AABI* 2018.

- Tempered Variational Bayes
 - Tempered posteriors
 - Variational Bayes
- ELBO maximization
 - Mixture models
 - Model selection
- Consistency of VB
 - Theoretical results
 - Efficient algorithms

Technical condition for posterior concentration

If the model is well-specified $(\exists \theta^0 \in \Theta, P_{\theta^0} = P^0)$:

Technical condition for posterior concentration

If the model is well-specified $(\exists \theta^0 \in \Theta, P_{\theta^0} = P^0)$:

Prior mass condition for concentration of tempered posteriors

The rate (r_n) is such that

$$\pi[\mathcal{B}(r_n)] \geq e^{-nr_n}$$

where
$$\mathcal{B}(r) = \{\theta \in \Theta : \mathcal{K}(P_{\theta^0}, P_{\theta}) \leq r\}.$$

Technical condition for posterior concentration

If the model is well-specified $(\exists \theta^0 \in \Theta, P_{\theta^0} = P^0)$:

Prior mass condition for concentration of tempered posteriors

The rate (r_n) is such that

$$\pi[\mathcal{B}(r_n)] \geq e^{-nr_n}$$

where $\mathcal{B}(r) = \{\theta \in \Theta : \mathcal{K}(P_{\theta^0}, P_{\theta}) \leq r\}.$

Prior mass condition for concentration of Variational Bayes

The rate (r_n) is such that there exists $\rho_n \in \mathcal{F}$ such that

$$\int \mathcal{K}(P_{\theta^0}, P_{\theta}) \rho_n(\mathrm{d}\theta) \leq r_n, \text{ and } \mathcal{K}(\rho_n, \pi) \leq n r_n.$$

Consistency of the variational approximation

P. Alquier & J. Ridgway (2017). Concentration of Tempered Posteriors and of their Variational Approximations. *Preprint arxiv*:1706.09293.

Theorem (Alquier, Ridgway)

Under the prior mass condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\bigg[\int D_{\alpha}(P_{\theta},P^{0})\tilde{\pi}_{n,\alpha}(d\theta)\bigg] \leq \frac{1+\alpha}{1-\alpha}r_{n}.$$

Consistency for mixture models

B.-E. Chérief-Abdellatif, P. Alquier. Consistency of Variational Bayes Inference for Estimation and Model Selection in Mixtures. *Electronic Journal of Statistics*, 2018.

Theorem (C.-A., Alquier)

Chose $\frac{2}{\kappa} \leq \alpha_j \leq 1$ and assume that estimation in (q_{θ}) (without mixture) at rate r_n . Then

$$\mathbb{E}\left[\int D_{\alpha}(P_{p,\theta_{1},\ldots,\theta_{K}},P_{p^{0},\theta_{1}^{0},\ldots,\theta_{K}^{0}})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right]\leq\frac{1+\alpha}{1-\alpha}2Kr_{n}.$$

Consistency of the true approximation

P. Alquier & J. Ridgway (2017). Concentration of Tempered Posteriors and of their Variational Approximations. *Preprint arxiv* :1706.09293.

Theorem (Alquier, Ridgway)

If there is a true model $(\exists K_0, \exists \theta^0 \in \Theta_{K_0}, P_{\theta^0} = P^0)$, then under the prior mass condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\bigg[\int D_{\alpha}(P_{\theta},P^{0})\tilde{\pi}_{n,\alpha}^{K_{0}}(d\theta)\bigg] \leq \frac{1+\alpha}{1-\alpha}r_{n}.$$

Consistency of the selected approximation

B.-E. Chérief-Abdellatif. Consistency of ELBO maximization for model selection. *Proceedings of AABI* 2018.

Theorem (C.-A.)

If there is a true model $(\exists K_0, \exists \theta^0 \in \Theta_{K_0}, P_{\theta^0} = P^0)$, then under the prior mass condition, for any $\alpha \in (0,1)$,

$$\mathbb{E}\bigg[\int D_{\alpha}(P_{\theta},P^{0})\tilde{\pi}_{n,\alpha}^{\hat{K}}(d\theta)\bigg] \leq \frac{1+\alpha}{1-\alpha}r_{n} + \frac{\log(\frac{1}{b_{K_{0}}})}{n(1-\alpha)}.$$

Robustness to misspecification (Gaussian mixtures)

The true distribution P^0 is such that $\mathbb{E}|X| < +\infty$.

Let
$$L \geq 1$$
, $b_K = 2^{-K}$, $\pi_K = \mathcal{D}_K(\alpha_1, \ldots, \alpha_K) \bigotimes \mathcal{N}(0, \mathcal{V}^2)^{\otimes n}$ and

$$r_{n,K} = \left[\frac{8K\log(nK)}{n} \bigvee \left(\frac{8K\log(n\mathcal{V})}{n} + \frac{8KL^2}{n\mathcal{V}^2}\right)\right] + \frac{K\log(2)}{n(1-\alpha)}.$$

Theorem

For any $\alpha \in (0,1)$,

$$\begin{split} \mathbb{E}\bigg[\int &D_{\alpha}\big(P_{\theta},P^{0}\big)\tilde{\pi}_{n,\alpha}^{\hat{K}}(d\theta)\bigg] \\ &\leq \inf_{K\geq 0}\bigg\{\frac{\alpha}{1-\alpha}\inf_{\theta^{*}\in\mathcal{S}_{K}\times[-L,L]^{K}}\mathcal{K}(P^{0},P_{\theta^{*}})+\frac{1+\alpha}{1-\alpha}r_{n,K}\bigg\}. \end{split}$$

Applications

If there is a true model $(\exists K_0, \exists \theta^0 \in \Theta_{K_0}, P_{\theta^0} = P^0)$:

Applications

If there is a true model $(\exists K_0, \exists \theta^0 \in \Theta_{K_0}, P_{\theta^0} = P^0)$:

Gaussian mixtures :
$$heta = (p, (m_1, \sigma_1^2), ..., (m_K, \sigma_K^2))$$

$$\mathbb{E}\bigg[\int D_{\alpha}(P_{\theta}, P^{0})\tilde{\pi}_{n,\alpha}^{\hat{K}}(d\theta)\bigg] = \mathcal{O}\bigg(\frac{K_{0}\log(nK_{0})}{n}\bigg)$$

Applications

If there is a true model $(\exists K_0, \exists \theta^0 \in \Theta_{K_0}, P_{\theta^0} = P^0)$:

Gaussian mixtures :
$$heta = (p, (m_1, \sigma_1^2), ..., (m_K, \sigma_K^2))$$

$$\mathbb{E}\bigg[\int D_{\alpha}(P_{\theta}, P^{0})\tilde{\pi}_{n,\alpha}^{\hat{K}}(d\theta)\bigg] = \mathcal{O}\bigg(\frac{K_{0}\log(nK_{0})}{n}\bigg)$$

Probabilistic PCA : $\theta \in \mathbb{R}^{d \times K}$

$$\mathbb{E}\bigg[\int D_{\alpha}(P_{\theta},P^{0})\tilde{\pi}_{n,\alpha}^{\hat{K}}(d\theta)\bigg] = \mathcal{O}\bigg(\frac{dK_{0}\log(dn)}{n}\bigg)$$

- Tempered Variational Bayes
 - Tempered posteriors
 - Variational Bayes
- ELBO maximization
 - Mixture models
 - Model selection
- Consistency of VB
 - Theoretical results
 - Efficient algorithms

Efficient algorithms

Question

Are there efficient algorithms to (provably) compute $\tilde{\pi}_{n,\alpha}$?

Efficient algorithms

Question

Are there efficient algorithms to (provably) compute $\tilde{\pi}_{n,\alpha}$?

B.-E. Chérief-Abdellatif, P. Alquier & M. E. Khan. A Generalization Bound for Online Variational Inference. *Preprint arXiv*, 2018.

Efficient algorithms

Question

Are there efficient algorithms to (provably) compute $\tilde{\pi}_{n,\alpha}$?

B.-E. Chérief-Abdellatif, P. Alquier & M. E. Khan. A Generalization Bound for Online Variational Inference. *Preprint arXiv*, 2018.

Parametric variational approximation :

$$\mathcal{F} = \{q_{\mu}, \mu \in M\}$$
 .

Objective : propose a way to update $\mu_t \to \mu_{t+1}$ so that q_{μ_t} leads to similar performances as the tempered posterior...

Some online strategies

Algorithm 3 SVA (Sequential Variational Approximation)

- 1: **for** t = 1, 2, ... **do**
- 2: $\theta_t = \mathbb{E}_{\theta \sim q_{\mu_t}}[\theta]$,
- 3: x_t revealed, update

$$\mu_{t+1} = \arg\min_{\mu \in \mathcal{M}} \left[\mu^T \nabla_{\mu} \sum_{i=1}^t \mathbb{E}_{\theta \sim q_{\mu}} [-\log p_{\theta}(x_i)] + \frac{\mathcal{K}(q_{\mu}, \pi)}{\alpha} \right].$$

4: end for

Some online strategies

Algorithm 3 SVA (Sequential Variational Approximation)

- 1: **for** t = 1, 2, ... **do**
- 2: $\theta_t = \mathbb{E}_{\theta \sim q_{\mu_t}}[\theta]$,
- 3: x_t revealed, update

$$\mu_{t+1} = \arg\min_{\mu \in \mathcal{M}} \left[\mu^T \nabla_{\mu} \sum_{i=1}^t \mathbb{E}_{\theta \sim q_{\mu}} [-\log p_{\theta}(x_i)] + \frac{\mathcal{K}(q_{\mu}, \pi)}{\alpha} \right].$$

4: end for

SVB (Streaming Variational Bayes) has update

$$\mu_{t+1} = \arg\min_{\mu \in \mathcal{M}} \left[\mu^T \nabla_{\mu} \mathbb{E}_{\theta \sim q_{\mu}} [-\log p_{\theta}(\mathbf{x}_t)] + \frac{\mathcal{K}(q_{\mu}, q_{\mu_t})}{\alpha} \right].$$

A regret bound for SVA

Theorem (C.-A., Alquier & Khan)

Assume that $\mu \mapsto \mathbb{E}_{\theta \sim q_{\mu}}[-\log p_{\theta}(x_t)]$ is *L*-Lipschitz and convex.

A regret bound for SVA

Theorem (C.-A., Alquier & Khan)

Assume that $\mu \mapsto \mathbb{E}_{\theta \sim q_{\mu}}[-\log p_{\theta}(x_t)]$ is L-Lipschitz and convex. (this is for example the case as soon as the log-likelihood is concave in θ and L-Lipschitz, and μ is a location-scale parameter).

A regret bound for SVA

Theorem (C.-A., Alquier & Khan)

Assume that $\mu \mapsto \mathbb{E}_{\theta \sim q_{\mu}}[-\log p_{\theta}(x_t)]$ is *L*-Lipschitz and convex. Assume that $\mu \mapsto \mathcal{K}(p_{\mu}, \pi)$ is γ -strongly convex. Then SVA satisfies :

$$\begin{split} & \sum_{t=1}^{T} [-\log p_{\theta_t}(x_t)] \\ & \leq \inf_{\mu \in M} \left\{ \mathbb{E}_{\theta \sim q_{\mu}} \left[\sum_{t=1}^{T} [-\log p_{\theta}(x_t)] \right] + \frac{\alpha L^2 T}{\gamma} + \frac{\mathcal{K}(q_{\mu}, \pi)}{\alpha} \right\}. \end{split}$$

Thank you!